python基础,什么是正则表达式,正则表达式的使用

什么是正则表达式


正则表达式 的英文名是 Regular Expression,不懂为何都翻译为正则表达式,明明翻译为规则表达式更容易让人理解。

?? 那么,什么是规则表达式呢?

向日葵智能 首页,我们看 python 实战项目目录里,有以下几条记录:

红框圈中的,都是调用百度人工智能API实现的,这几条记录中,实际上有很多信息是冗余的,核心的信息只有:

怎样从冗余的信息中提取出核心的关键词句呢?注意到每一个条目的组成都是:

python实战小项目,xxxx,调用百度人工智能 API 实现

xxxx 就是我们要获取的关键词句。我们可以指定规则如下:

python实战小项目,,调用百度人工智能 API实现 中间部分词句。

这个规则实际上就可以称之为 规则表达式,也即 正则表达式

python 正则表达式


python 的 re 模块库,让我们可以很方便的实现正则表达式。re 模块的 compile 函数根据一个模式字符串和可选的标志参数生成一个正则表达式对象。该对象拥有一系列方法用于正则表达式匹配和替换。下面简要的常用的两个函数:

1. re.compile 函数

compile 函数用于编译正则表达式,生成一个正则表达式( Pattern )对象,供 match() 和 search() 这两个函数使用。

语法格式为:re.compile(pattern[, flags])
参数:

pattern : 一个字符串形式的正则表达式(列表见本页最下面)
flags : 可选,表示匹配模式,比如忽略大小写,多行模式等,具体参数为:

  • re.I 忽略大小写
  • re.L 表示特殊字符集 \w, \W, \b, \B, \s, \S 依赖于当前环境
  • re.M 多行模式
  • re.S 即为 . 并且包括换行符在内的任意字符(. 不包括换行符)
  • re.U 表示特殊字符集 \w, \W, \b, \B, \d, \D, \s, \S 依赖于 Unicode 字符属性数据库
  • re.X 为了增加可读性,忽略空格和 # 后面的注释

python实例

>>>import re
>>> pattern = re.compile(r'\d+')                    # 用于匹配至少一个数字
>>> m = pattern.match('one12twothree34four')        # 查找头部,没有匹配
>>> print m
None
>>> m = pattern.match('one12twothree34four', 2, 10) # 从'e'的位置开始匹配,没有匹配
>>> print m
None
>>> m = pattern.match('one12twothree34four', 3, 10) # 从'1'的位置开始匹配,正好匹配
>>> print m                                         # 返回一个 Match 对象
<_sre.SRE_Match object at 0x10a42aac0>
>>> m.group(0)   # 可省略 0
'12'
>>> m.start(0)   # 可省略 0
3
>>> m.end(0)     # 可省略 0
5
>>> m.span(0)    # 可省略 0
(3, 5)

在上面,当匹配成功时返回一个 Match 对象,其中:

  • group([group1, …]) 方法用于获得一个或多个分组匹配的字符串,当要获得整个匹配的子串时,可直接使用 group() 或 group(0);
  • start([group]) 方法用于获取分组匹配的子串在整个字符串中的起始位置(子串第一个字符的索引),参数默认值为 0;
  • end([group]) 方法用于获取分组匹配的子串在整个字符串中的结束位置(子串最后一个字符的索引+1),参数默认值为 0;
  • span([group]) 方法返回 (start(group), end(group))。

再看看一个例子:

>>>import re
>>> pattern = re.compile(r'([a-z]+) ([a-z]+)', re.I)   # re.I 表示忽略大小写
>>> m = pattern.match('Hello World Wide Web')
>>> print m                               # 匹配成功,返回一个 Match 对象
<_sre.SRE_Match object at 0x10bea83e8>
>>> m.group(0)                            # 返回匹配成功的整个子串
'Hello World'
>>> m.span(0)                             # 返回匹配成功的整个子串的索引
(0, 11)
>>> m.group(1)                            # 返回第一个分组匹配成功的子串
'Hello'
>>> m.span(1)                             # 返回第一个分组匹配成功的子串的索引
(0, 5)
>>> m.group(2)                            # 返回第二个分组匹配成功的子串
'World'
>>> m.span(2)                             # 返回第二个分组匹配成功的子串
(6, 11)
>>> m.groups()                            # 等价于 (m.group(1), m.group(2), ...)
('Hello', 'World')
>>> m.group(3)                            # 不存在第三个分组
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: no such group

2. findall函数

在字符串中找到正则表达式所匹配的所有子串,并返回一个列表,如果没有找到匹配的,则返回空列表。

注意: match 和 search 是匹配一次 findall 匹配所有。

语法格式为:findall(string[, pos[, endpos]])
参数:

  • string : 待匹配的字符串。
  • pos : 可选参数,指定字符串的起始位置,默认为 0。
  • endpos : 可选参数,指定字符串的结束位置,默认为字符串的长度。
  • 查找字符串中的所有数字:

python 实例

# -*- coding:UTF8 -*-

import re

pattern = re.compile(r'\d+')   # 查找数字
result1 = pattern.findall('runoob 123 google 456')
result2 = pattern.findall('run88oob123google456', 0, 10)

print(result1)
print(result2)

以上输出结果:

['123', '456']
['88', '12']

python 正则表达式实战


我们就以“什么是正则表达式”小节中的例子,从

里去除冗余项,提取出关键词句。

直接上 python 代码:

# -*- coding:UTF8 -*-

import re

str = '''
    python实战小项目,深度学习让电脑认出菜品,调用百度人工智能 API 实现
    python实战小项目,深度学习合成语音,调用百度人工智能 API 实现
    python实战小项目,人脸识别,调用百度人工智能 API 实现
    python实战小项目,人脸检测,让电脑对你的颜值打分,调用百度人工智能 API 实现
    python实战小项目,多线程百度云盘下载,突破限速,超越迅雷超高速下载
      '''

pattern = re.compile(r'python实战小项目,(.*?),调用百度人工智能 API 实现', re.S)   
result = pattern.findall(str)

for item in result:
    print(item)

以上输出结果:

深度学习让电脑认出菜品
深度学习合成语音
人脸识别
人脸检测,让电脑对你的颜值打分

至此,我们就用 python 实现了一次正则表达式的使用。


正则表达式pattern

模式 描述
^ 匹配字符串的开头
$ 匹配字符串的末尾。
. 匹配任意字符,除了换行符,当re.DOTALL标记被指定时,则可以匹配包括换行符的任意字符。
[...] 用来表示一组字符,单独列出:[amk] 匹配 'a','m'或'k'
[^...] 不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。
re* 匹配0个或多个的表达式。
re+ 匹配1个或多个的表达式。
re? 匹配0个或1个由前面的正则表达式定义的片段,非贪婪方式
re{ n} 精确匹配 n 个前面表达式。例如, o{2} 不能匹配 "Bob" 中的 "o",但是能匹配 "food" 中的两个 o。
re{ n,} 匹配 n 个前面表达式。例如, o{2,} 不能匹配"Bob"中的"o",但能匹配 "foooood"中的所有 o。"o{1,}" 等价于 "o+"。"o{0,}" 则等价于 "o*"。
re{ n, m} 匹配 n 到 m 次由前面的正则表达式定义的片段,贪婪方式
ab 匹配a或b
(re) 匹配括号内的表达式,也表示一个组
(?imx) 正则表达式包含三种可选标志:i, m, 或 x 。只影响括号中的区域。
(?-imx) 正则表达式关闭 i, m, 或 x 可选标志。只影响括号中的区域。
(?: re) 类似 (...), 但是不表示一个组
(?imx: re) 在括号中使用i, m, 或 x 可选标志
(?-imx: re) 在括号中不使用i, m, 或 x 可选标志
(?#...) 注释.
(?= re) 前向肯定界定符。如果所含正则表达式,以 ... 表示,在当前位置成功匹配时成功,否则失败。但一旦所含表达式已经尝试,匹配引擎根本没有提高;模式的剩余部分还要尝试界定符的右边。
(?! re) 前向否定界定符。与肯定界定符相反;当所含表达式不能在字符串当前位置匹配时成功
(?> re) 匹配的独立模式,省去回溯。
\w 匹配字母数字及下划线
\W 匹配非字母数字及下划线
\s 匹配任意空白字符,等价于 [\t\n\r\f].
\S 匹配任意非空字符
\d 匹配任意数字,等价于 [0-9].
\D 匹配任意非数字
\A 匹配字符串开始
\Z 匹配字符串结束,如果是存在换行,只匹配到换行前的结束字符串。
\z 匹配字符串结束
\G 匹配最后匹配完成的位置。
\b 匹配一个单词边界,也就是指单词和空格间的位置。例如, 'er\b' 可以匹配"never" 中的 'er',但不能匹配 "verb" 中的 'er'。
\B 匹配非单词边界。'er\B' 能匹配 "verb" 中的 'er',但不能匹配 "never" 中的 'er'。
\n, \t, 等. 匹配一个换行符。匹配一个制表符。等
\1...\9 匹配第n个分组的内容。
\10 匹配第n个分组的内容,如果它经匹配。否则指的是八进制字符码的表达式。
阅读更多:   Python
已有 3 条评论
  1. […] python基础,什么是正则表达式,正则表达式的使用 […]

  2. […] 正则表达式的使用,可以参照:python基础,什么是正则表达式,正则表达式的使用,关键就是找规律。首先,要明确的是,咱们只关心网站域名信息,只要找出域名信息即可。 […]

  3. […] 其实流程很简单,就是将简历拍照,发送给程序,程序识别出文字,正则匹配出相关信息,填写入 excel 对应栏目。 […]

添加新评论

icon_redface.gificon_idea.gificon_cool.gif2016kuk.gificon_mrgreen.gif2016shuai.gif2016tp.gif2016db.gif2016ch.gificon_razz.gif2016zj.gificon_sad.gificon_cry.gif2016zhh.gificon_question.gif2016jk.gif2016bs.gificon_lol.gif2016qiao.gificon_surprised.gif2016fendou.gif2016ll.gif