tensorflow常用API
发表于: 2018-07-15 20:42:52 | 已被阅读: 20 | 分类于: tensorflow
tf.nn.conv2d
conv2d(
input,
filter,
strides,
padding,
use_cudnn_on_gpu=True,
data_format='NHWC',
name=None
)
![](https://www.xrkzn.cn/wp-content/uploads/2018/07/57fd47ecbf431d8281e9982c6becbffe.png)
tf.nn.relu
relu(
features,
name=None
)
![](/static/images/2018/07/19be692a9b1dec83bb8b6829fec206b9.png)
tf.nn.max_pool
max_pool(
value,
ksize,
strides,
padding,
data_format='NHWC',
name=None
)
![](https://www.xrkzn.cn/wp-content/uploads/2018/07/4f0b5e408594aa3d8c140c9e28779a08.png)
tf.nn.dropout
dropout(
x,
keep_prob,
noise_shape=None,
seed=None,
name=None
)
![](https://www.xrkzn.cn/wp-content/uploads/2018/07/3ed63128de55b1e06c9935c0b2eb343b.png)
tf.nn.sigmoid_cross_entropy_with_logits
功能说明: 先对 logits 通过 sigmoid 计算,再计算交叉熵
sigmoid_cross_entropy_with_logits(
_sentinel=None,
labels=None,
logits=None,
name=None
)
![](https://www.xrkzn.cn/wp-content/uploads/2018/07/5d7e7d986c4021d4e9a1cd35a33051c5.png)
tf.truncated_normal
产生截断正态分布随机数,取值范围为 [ mean - 2 * stddev, mean + 2 * stddev ]。
truncated_normal(
shape,
mean=0.0,
stddev=1.0,
dtype=tf.float32,
seed=None,
name=None
)
![](https://www.xrkzn.cn/wp-content/uploads/2018/07/a2686d0b755fb6a44504a7b99fc53490.png)
import tensorflow as tf
initial = tf.truncated_normal(shape=[3,3], mean=0, stddev=1)
print(tf.Session().run(initial))
执行结果: 将得到一个取值范围 [ -2, 2 ] 的 3 * 3 矩阵.
tf.constant
功能说明: 根据 value 的值生成一个 shape 维度的常量张量
constant(
value,
dtype=None,
shape=None,
name='Const',
verify_shape=False
)
![](/static/images/2018/07/1291b09f671a0673d7c69e992e6edfc6.png)
tf.placeholder
功能说明: 是一种占位符,在执行时候需要为其提供数据
placeholder(
dtype,
shape=None,
name=None
)
![](https://www.xrkzn.cn/wp-content/uploads/2018/07/6415be547972d59023e846aed02f8d23.png)