test
发表于: 2020-07-26 17:29:00 | 已被阅读: 51 | 分类于: 杂谈
\( $\sum_{i=0}^{n}i^2 \)$ %第一种
\( $i^2_1 \)$
\( $\sum_{i=0}^{n}i^2 \)$ %第二种
\( $f(x)=\sum \sum_{i=0}^{100}e_{1}^{2}dx \)$
\( $f(x)=\sum \sum_{i=0}^{100}\int_{a}^{b}e_{1}^{2}dx \)$
\( $\begin{vmatrix}1 & 2 & 3\\ 3 & 3 & 5\end{vmatrix} \)$
\( $\underset{D}{argmax}{\mathbb{E}_{x \sim p(x)), z \sim q(z))}}log(D(x)) \)$
\( $\frac{\partial o}{\partial x_i}\bigr\rvert_{x_i=1} = \frac{9}{2} = 4.5 \)$
\( $\begin{split}J=\left(\begin{array}{ccc} \)$
\( $f(x)=\int_{-\infty}^\infty\widehat f\xi\,e^{2\pi i\xi x}\,d\xi \)$
\( $\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}}\\ \)$
\( $\vdots & \ddots & \vdots\\ \)$
\( $\frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}} \)$
\( $\end{array}\right)\end{split} \)$
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
\( $x^n+y^n=z^n \label {1} \)$
\( $x^n+y^n=z^n \label {2} \)$
\( $x^n+y^n=z^n \tag {1} \)$
\( $x^n+y^n=z^n \tag {2} \)$