我要努力工作,加油!

PyTorch入门系列,使用 torch.nn 包执行后向传播自动求梯度的基本操作,如何只迭代更新训练部分参数,而不是全部参数?

		发表于: 2020-09-23 09:01:00 | 已被阅读: 75 | 分类于: 杂谈
		

定义网络

使用 PyTorch 定义网路是简单的,请参照如下 Python 代码:

import torch
import torch.nn as nn
import torch.nn.functional as F


def num_flat_features(x):
    size = x.size()[1:]  # all dimensions except the batch dimension
    num_features = 1
    for s in size:
        num_features *= s
    return num_features


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 3)
        self.conv2 = nn.Conv2d(6, 16, 3)
        self.fc1 = nn.Linear(16 * 6 * 6, 120)  # 6*6 from image dimension
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

简单打印下上述网络内容:

net = Net()
print(net)

输出如下:

Net(
  (conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))
  (fc1): Linear(in_features=576, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

反向传播